SIMPLIFYING DOCUMENTATION WHILE APPROACHING SITE CLOSURE: INTEGRATED HEALTH AND SAFETY PLANS AS DOCUMENTED SAFETY ANALYSIS

Authors: Tulanda Brown
Contributors: Patricia Fisk, Sharon Kohler, Fred Krach, and William Klein

Fluor Fernald, Inc.*
P.O. Box 538704
Cincinnati, Ohio 45253

For Presentation at the
Safety Analysis' Ultimate End Product: Getting Work Done Safely
Salt Lake City, Utah, June 21-27, 2003

*Fluor, Inc. with the U.S. Department of Energy under Contract No. DE-AC24-01OH20115
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
Simplifying Documentation While Approaching Site Closure: Integrated Health and Safety Plans as Documented Safety Analysis

Author: Tulanda Brown
Contributors: Patricia Fisk, Sharon Kohler, Fred Krach, and William Klein

Fluor Fernald, Inc.*
P.O. Box 538704
Cincinnati, Ohio 45253

*Fluor Fernald with the U. S. Department of Energy under Contract No. DE-AC24-01OH20115
Abstract

At the Fernald Closure Project (FCP) near Cincinnati, Ohio, environmental restoration activities are supported by Documented Safety Analyses (DSAs) that combine the required project-specific Health and Safety Plans, Safety Basis Requirements (SBRs), and Process Requirements (PRs) into single Integrated Health and Safety Plans (I-HASPs). By isolating any remediation activities that deal with Enriched Restricted Materials, the SBRs and PRs assure that the hazard categories of former nuclear facilities undergoing remediation remain less than Nuclear. These integrated DSAs employ Integrated Safety Management methodology in support of simplified restoration and remediation activities that, so far, have resulted in the decontamination and demolition (D&D) of over 150 structures, including six major nuclear production plants. This paper presents the FCP method for maintaining safety basis documentation, using the D&D I-HASP as an example.

Disclaimer

This technical information was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agencies thereof, nor any of their employees, nor any of its contractors, subcontractors nor their employees make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, of Fluor Fernald, its affiliates or its parent company.
1.0 Introduction

The objective of the Fernald Closure Project (FCP) is to safely complete the environmental restoration of the Fernald site by 2006. Over 150 structures (out of 220), including six of the ten major production plants, have been safely demolished. Documented Safety Analyses (DSAs) for these facilities have gone through a process of simplification, from individual operating Safety Analysis Reports (SARs) to a single site-wide Authorization Basis containing nuclear facility Basis for Interim Operations (BIOS) to individual project Auditable Safety Records (ASRs). The final stage in DSA simplification consists of project-specific Integrated Health and Safety Plans (I-HASPs) that address all aspects of safety, from the worker in the field to the safety basis requirements preserving the facility/activity hazard categorization. This paper addresses using I-HASPs as DSAs.

The evolution of FCP DSAs reflects the course of environmental restoration of the site. As the facilities transitioned from operations to active shutdown (in which hazardous materials are sorted, packaged, and removed), the hazards to the public, and particularly to the workers, changed. Safety documentation that previously addressed operational safety issues needed to focus on a different type of work and a different type of worker to ensure that appropriate hazards were addressed. A more integrated site-wide approach was needed to address both the oversight audience and the direct supervisory/worker audience. The solution was to combine the project-specific HASP with the project DSA(s), resulting in a document that addresses hazard categorization, OSHA safety concerns, and implementation requirements.

A large part of the I-HASP effort involved the Nuclear and System Safety (N&SS) group explaining to stakeholders the I-HASP rationale and obtaining their buy-in for it. This was no easy task considering the diversity of the projects in progress: facilities shutdown, aquifer restoration, waste pit remediation, on-site disposal, nuclear materials disposition, and remediation of silos containing uranium ore residues. After obtaining buy-in from the DOE and individual project managers, a plan was generated for implementing an I-HASP for each major project. Site procedures were revised to allow for this new type of documentation, and a generic I-HASP outline was developed as a framework for future projects.

The first I-HASP was for Facilities Decontamination and Demolition (D&D) Projects. A diverse team of safety analysts, project personnel, and safety support personnel blended the existing DSAs with the existing HASP to generate a single I-HASP. This consolidation resulted in one all-purpose document that can be referenced by all project participants, from first line supervisors to outside reviewers. The D&D I-HASP addresses all tiers of project safety, thus reducing administrative work and freeing up the ever-shrinking pool of safety personnel for direct involvement in project safety. This format simplifies training and safety briefings, and is simple to revise when project scope changes (as opposed to multiple overlapping safety documents).

Fluor Fernald believes its diverse experience in shutting down and remediating facilities, and the corresponding simplification of its DSAs, is unique in the DOE complex and can benefit other remediation sites.
2.0 FCP Site Description

The FCP (formerly known as the Fernald Environmental Management Project [FEMP]) is located in southwestern Ohio, approximately twenty miles northwest of downtown Cincinnati near the communities of Miamitown and Ross, Ohio. The total site area is 1050 acres. FCP is owned by the DOE and is operated by Fluor Fernald, Inc.

The FCP was built in 1950; full operation started in 1953. The facility was an in-house integrated production complex for processing uranium and its compounds from natural uranium ore, ore concentrates, and recycled uranium. The mission was to produce uranium metal for use in government defense programs. A wide variety of chemical and metallurgical process steps were used to support the production of uranium metal products.

Production-related operations ceased in July, 1989. Much of the idled equipment was scheduled for restart. However, official termination of the production mission took place in June, 1991, without restart or stabilization of intermediate products. Since 1989, the mission has been focused on environmental restoration and remediation under the direction of Fluor Fernald. The current contract between DOE and Fluor Fernald calls for complete closure of the site by 2006.

3.0 SBD/DSA History at the FCP

FIGURE 3-1 shows the evolution of DSAs from the time of operating nuclear facilities to remediated certified clean areas. The project flow in the center of FIGURE 3-1 is flanked by the Safety Basis Documents (SBDs) that cover that project element.

During the production years, individual Nuclear facilities at Fernald were operated under individual Safety Analyses Reports (SARs). In the early stages of site closure, all Nuclear facilities were combined under one Authorization Basis (AB) containing individual Bases for Interim Operation (BIOS). This AB is shown at the top left of FIGURE 3-1.

As site closure progressed and hazardous inventory was shipped offsite, facilities could be downgraded and their corresponding SBDs simplified.

Site closure proceeded to the Decontamination phase of site remediation work, during which structures were prepared for Demolition by inventory removal, utility isolation, and gross decontamination. At that point, an Auditable Safety Record (ASR) was produced for each downgraded facility, allowing simple material handling, storage, necessary maintenance, and surveillance.
Simplifying Documentation While Approaching Site Closure: Integrated Health and Safety Plans as Documented Safety Analysis

FIGURE 3-1: SBD/DSA Evolution at the FCP Site.
4.0 I-HASPs as DSAs

Once a facility was ready for turnover to a demolition contractor, a new type of SBD was needed that would incorporate the new scope of work and associated hazards. FCP safety personnel struggled with how to provide a DSA that was more relevant to the project, including not only the necessary Safety Basis Requirements but also specific project hazards and controls. The decision was made to combine the project-specific Health and Safety Plan (from the Demolition Closure Contract), which contained Occupational Safety and Health Administration (OSHA) worker safety concerns and protections, with the Hazard Categorization documentation, including the associated Safety Basis Requirements (SBRs) and Process Requirements (PRs).

The resulting D&D I-HASP was developed using the provisions of 29 CFR 1926.65 and 29 CFR 1910.120 OSHA requirements. An Integrated Hazard Analysis (IHA), in the form of a hazard matrix, was generated. The IHA provided the minimum acceptable requirements for safely performing D&D activities. Also included in the I-HASP were sections on Basis of Decision, Management of Change, and Lessons Learned from previous projects. An example outline of I-HASP contents, taken from the relevant FCP site procedure, is provided as ATTACHMENT 1.

So far, all but two of the site's non-Nuclear projects have had their SBDs consolidated into I-HASPs; the last two are in progress. In addition to SBRs, PRs, and OSHA requirements, the I-HASPs use methods prescribed in DOE-STD-1120-98 for Integrated Safety Management. Thus, since the I-HASPs cover FCP environmental restoration activities, and since they also cover decommissioning of facilities with only low-level residual fixed radioactivity, they meet the criteria prescribed in 10 CFR Part 830 for DSAs, even though the facilities undergoing D&D are classified as less than Nuclear.

5.0 Maintaining the D&D Project's Hazard Category via SBRs and PRs

All FCP facilities/activities/operations have safety envelopes that define the boundaries of controlling parameters for various accident scenarios. Accident consequences are determined by hazard analyses, and result in a hazard category or classification. Specified SBRs are limitations directly associated with the analyzed safety envelope and current hazard category/classification. PRs ensure that a facility/operation/activity remains safe in accordance with good management practices, established safety programs, routine conditions, and anticipated operating modes. PRs can also help ensure that SBRs are not violated. SBRs are derived from specific parameters used in the safety evaluations, while PRs function to decrease the likelihood of a potential accident scenario or act as accident mitigators to decrease the severity of the consequences of that event.

The hazard classification for FCP Decontamination activities is set at Radiological (RadF) to allow for interim storage and packaging activities preceding, or in parallel with, Decontamination efforts. The hazard classification for FCP Demolition activities is set at Other Industrial Facility (OIF). However, it is anticipated that hazardous materials exceeding OIF threshold limits may be encountered during facility demolition. Due to the complexities of decommissioning a facility, hold-up material exceeding threshold values established in 40 CFR...
302 may be inaccessible or not identified prior to demolition work. Fluor Fernald makes contractual arrangements for the removal of known hold-up material with the demolition subcontractor. In order to anticipate the discovery of hold-up material during demolition, Process Requirements allow for, and appropriately mitigate, this occurrence by transferring responsibility for this material back from the contractor to FCP personnel. Contractor personnel are trained to anticipate and recognize the presence of possible hold-up material and respond appropriately. Example SBRs and PRs are provided in ATTACHMENT 2.

6.0 Conclusion

The I-HASP provides a document that supports the diverse and evolving remediation activities at FCP while maintaining the safety basis and meeting OSHA and DOE criteria. Facility downgrading is a primary goal of remediation. Downgrading requires personnel to re-focus safety emphasis from protecting the public from high-level nuclear hazards to hands-on site worker hazards. The I-HASP concept is a vital part of Fluor Fernald’s effort to realign its safety documentation to reflect this reality, and to apply rigor and discipline to a changing situation. The I-HASP combines the project safety basis, occupational safety, industrial hygiene, fire safety, radiological, and other safety-related requirements, along with project-specific hygiene, fire safety, radiological, and other safety-related requirements, along with project-specific controls and implementation methods. This consolidation of requirements via an I-HASP has several benefits. Compared to the use of multiple safety documents, the I-HASP:

- promotes project implementation of Integrated Safety Management.
- provides a rigorous, centralized review of all project-specific hazards.
- provides a useful self-assessment tool for project personnel.
- improves and simplifies worker access to project-specific safety-related requirements.
- provides one comprehensive document for workers briefings.
- provides easier implementation of safety-related changes within each project.

If there are any questions, please feel free to contact Tulanda Brown.

Ms. Tulanda Brown
Manager, Nuclear & System Safety
Fluor Fernald, Inc.
P.O. Box 538704
Cincinnati, Ohio 45253

Office: 513-648-5102
FAX: 513-648-5527
E-mail: tulanda.brown@fernaldf.egov.
ATTACHMENT 1
Integrated Health and Safety Plan (I-HASP) Table of Contents Guidelines

The main advantage of an I-HASP is that it provides a means for consolidating multiple safety basis documents into a single document that meets the needs of outside reviewers, management, supervisors, and workers in the field. An I-HASP consists of a standard project-specific HASP (PSHSP) with an additional section addressing System Safety, and a System Safety Basis of Decision Document (BDD). The I-HASP is essentially the content of a FEMP safety basis document (e.g., an Auditable Safety Record [ASR]) inserted into a standard PSHSP along with any needed basis for decision documentation. The I-HASP meets DOE’s requirements for a DSA, as outlined in 10 CFR 830, Subpart B, and also the requirements for Health and Safety Plans specified in 29 CFR 1910.120 and 29 CFR 1926.65.

The outline below is intended to serve as a guideline. It provides the I-HASP author with a catalog of possible topics (with some commentary) so that nothing important will be overlooked. The actual content and layout of the I-HASP will be dictated by the project-specific hazards and the needs/requirements of the stakeholders (especially the project customers), as determined by the N&SS System Safety Analyst.

1.0 INTRODUCTION
 - Purpose and Scope
 - Site History and Description
 - Facility/Project/Activity History, Description and Work Area Characterization
 - Facility/Project/Activity Operations and Work Description
 - Organization Structure and Key Personnel Responsibilities (includes names, titles, responsibilities and alternates)

2.0 INTEGRATED SAFETY MANAGEMENT SYSTEM (ISMS)
 Briefly summarize the Seven Guiding Principles and Five Core Functions of ISM as they apply to the project and reference PL-3081, Safety Management System Description (SMSD), for more detailed information.

3.0 SITE/WORK CONTROLS
 - Policies and Procedures that Contain Work Controls
 - Radiological Areas
 - Exclusion Zones
 - Asbestos or Lead Regulated Areas, as applicable
 - Other Special Project Specific Site/Work Controls, as required

4.0 CONDUCT OF OPERATIONS
 As applicable
ATTACHMENT 1
Integrated Health and Safety Plan (I-HASP) Table of Contents Guidelines

5.0 SAFETY BASIS

Includes basis for Hazard Classification

6.0 HAZARDS ASSESSMENT METHODOLOGY

Includes Integrated Hazard Analysis (IHA) and/or Hazard Control Matrix (Attachment A below), when applicable

7.0 HAZARDS DESCRIPTION AND CONTROLS

This will generally be the contents of the existing PSHSP for existing projects. The existing PSHSP content will be validated to ensure that what is listed is in fact current. Modifications may be required due to changes in the project/activity or to ensure adequate coverage. List the project-specific hazards, and their controls (per OSHA 29 CFR 1910.120 and 29 CFR 1926.65) for construction and general industry, as applicable. The content of this section may contain, but is not limited to:

- Excavation Hazards
- Traffic hazards
- Slip, Trip and Fall Hazards
- Noise Hazards
- Housekeeping Hazards
- Ladder Hazards
- Hand and Power Tool Hazards
- Electrical Hazards
- Hazardous Energy
- Hoisting and Rigging Hazards
- Confined Space Hazards
- Flammable Material Hazards
- Hot Work Hazards
- Compressed Gas Hazards
- Biological Hazards
- Environmental Hazards
- Heat and Cold Stress Hazards
- Radiological Hazards
- Chemical Hazards
- Adverse Weather Conditions

8.0 NUCLEAR/SYSTEM SAFETY REQUIREMENTS

This section would include the following information from existing safety basis documentation (as required):

- Bounding accidents
- Preventative and mitigative measures
- Controls for preventative and mitigative measures
- Technical Safety Requirements (TSRs)
- Safety Basis Requirements (SBRs)
ATTACHMENT 1
Integrated Health and Safety Plan (I-HASP) Table of Contents Guidelines

- Process Requirements (PRs)
- Human Factors requirements or recommendations

9.0 TRAINING REQUIREMENTS

- Hazard Communication
- Material Safety Data Sheet (MSDS) Awareness
- Job Briefings
- Safety Meetings
- Visitor Controls
- Training Records

10.0 PERSONAL PROTECTIVE EQUIPMENT

As required for the project

11.0 MEDICAL SURVEILLANCE

- General Programs
- Use of Prescription Medicine
- Medical Services
- Medical Monitoring
- Bio Assay, as required

12.0 MONITORING

- Work Space Air Monitoring
- Data Quality Assurance
- Data Review
- Laboratory Analysis, as required
- Environmental Monitoring (also see Attachment B below)

13.0 DECONTAMINATION PLAN

- Contamination Control
- Personnel Decontamination
- Equipment Decontamination
- Special Decontamination Requirements, such as Asbestos and Lead, where applicable
- Waste Disposition
ATTACHMENT 1
Integrated Health and Safety Plan (I-HASP) Table of Contents Guidelines

14.0 EMERGENCY RESPONSE PLAN

Items may be added to or deleted from the following, as required:

- Reporting
- Emergency Numbers
- Site Notification Procedures
- Evacuation Routes
- Rally Point Accountability
- Emergency Equipment Ownership, Location and Availability
- Emergency Response
- Medical & Fire Emergencies
- Personal Contamination (Rad.)
- Radiological Emergencies
- Personal Contamination (Chemical)
- Uncontrolled Hazardous Waste or Hazardous Substance Release
- Incidental Release of Hazardous Substances
- Spill Response
- Engineering Spill Controls
- Administrative Spill Controls
- Confined Space Emergencies
- Post-Emergency Response
- Weather Limitations/Adverse Conditions

15.0 OCCURRENCE REPORTING

Includes accident investigation

16.0 SITE/EQUIPMENT MAINTENANCE MANAGEMENT

As applicable

17.0 QUALITY ASSURANCE

As required for the project

18.0 MANAGEMENT OF CHANGE

Includes the requirement of annual review, requirements for updates, and document control. Also included is management control of design changes and field changes. Design and field changes are subject to NS-0008, Safety Basis Document Review (SBDR) Process. However, a project can develop an impact screen to screen out non-safety-basis issues (e.g., the WPRAP screen and the Silos RCS Phase 1 Impact Screen).

19.0 ACTIVE REFERENCE DOCUMENTS

Lists all documents that are referenced for use by project personnel, but that are not incorporated into the I-HASP. This would include Trailers to a construction PSHSP, Pressure Vessel Codes, ISM, etc.
ATTACHMENT 1
Integrated Health and Safety Plan (I-HASP) Table of Contents Guidelines

20.0 SUPERCEDED REFERENCE DOCUMENTS

This section should contain the following statement:

The applicable content of the following documents have been incorporated into, and superceded by, this I-HASP. These documents are listed for historical purposes only, and are no longer active. They are not to be used for work, but only to provide auditable record continuity.

The author should then list the SA-numbered documents, PSHSPs, ALARA Analysis, and other documents incorporated in the I-HASP. For each, provide the document number, revision at inactivation, title, and (if needed) a brief description to clarify the nature of the incorporated content. This section may not be required if only part of the provisions of an SBD has been incorporated, and the SBD is still active to cover other activities.

21.0 BASIS OF DECISION DOCUMENTATION (BDD)

This section contains information useful to management. It summarizes the basis for decision for the hazard category, other applicable hazard/risk analyses and evaluations; and descriptions of how the hazards are controlled. The BDD contains the details, applicable calculations (or references to them), and the basis for the results stated in the main body of the I-HASP.

The BDD may be an attachment and may contain any of the I-HASP sections from above, if requested by the project, to make the I-HASP more user-friendly for the project personnel in the field.

Where applicable, the following appendices, and any other pertinent management information, will be supplied as part of the BDD and/or in the I-HASP main body.

- Safety Basis
- ISMS
- Accident Analysis
- Hazard Category Calculations
- Human Factors Evaluation
- ALARA Analysis
- Fire Hazards Analysis
- Health Physics Plan
- Others, as applicable
ATTACHMENT 1
Integrated Health and Safety Plan (I-HASP) Table of Contents Guidelines

22.0 ATTTACHMENTS

Provide (as applicable) any attachments contained in the current Project Specific Health and Safety Plan (PSHSP), or any other applicable attachments, such as:

- Attachment A: If a Project Specific Health and Safety Requirements Matrix (PSHSRM) was not provided as Attachment 1 to the PSHSP, provide an Integrated Hazard Analysis (IHA) or a Hazard Control Matrix to provide a tabular summary of hazards, with their mitigators and controls, keyed to project activities/tasks.

- Attachment B: Personnel and Environmental Monitoring and Action Levels

- Attachment C: Work Area Material Safety Data Sheets (MSDS) and Information Sheets

- Attachment D: List and Location of Confined Spaces, when applicable

- Attachment E: Work Area Map, including Rally Point(s) and Location of FF Medical Facility

- Attachment F: OSHA and DOE Employee Rights Poster

- Attachment G: Safety Meeting Roster

- Attachment H: I-HASP Acknowledgment Form (specifying the worker has read it)

- Attachment “X”: Other Applicable Attachments, such as the BDD, as desired.
ATTACHMENT 2: Example Safety Basis Requirements (SBRs) and Process Requirements (PRs)

<table>
<thead>
<tr>
<th>SBR or PR</th>
<th>Requirement</th>
<th>Basis/ Source</th>
<th>Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBR1</td>
<td>To maintain the facility/activity hazard classification of Radiological (RadF) for decontamination activities and Other Industrial Facility (OIF) during demolition, Enriched Restricted Material (ERM) activities shall be conducted only within areas meeting the functional requirements of PL-3049, Appendix O (i.e., with Fissile Material Control Areas [FMCAs]). (See also PR7.)</td>
<td>Worker radiation protection (ASR SA 2000-1027, Rev 2, SBR3)</td>
<td>This I-HASP (current revision) in the Enriched Materials sub-section of Section 4.1, Radiological Hazards and Controls</td>
</tr>
<tr>
<td>SBR2</td>
<td>To maintain the facility/activity hazard classification of RadF for the applicable facilities/areas during decontamination activities, potential releasable inventories of hazardous chemicals shall not exceed the thresholds of 29 CFR 1910.119 AND 40 CFR 355 during D&D activities. (See also PR7.) When chemicals exceeding the thresholds are discovered, Nuclear and Systems Safety (N&SS) shall be contacted, and N&SS approval shall be obtained before handling the materials.</td>
<td>Worker protection against hazardous chemicals. (ASR SA 2000-1027, Rev 2, SBR4)</td>
<td>This I-HASP (current revision) in Section 4.2, Chemical Hazards and Controls; and FI&URP Manager’s Standing Orders Plan, 60400-PL-0010</td>
</tr>
<tr>
<td>SBR3</td>
<td>Prior to facility demolition, FI&URP shall ensure that the safe configuration of equipment and facilities (i.e., utilities disconnected, de-energized) is documented and reported.</td>
<td>Worker protection against electrocution. (ASR Number SA 2000-1028, Rev 1, SBR1)</td>
<td>This I-HASP (current revision) in Section 4.10, Electrical Power Hazards and Controls; Demolition Closure Project Contract (DCPC) Contract No. FSC 648, Part 8; FI&URP Manager’s Standing Orders Plan, 60400-PL-0010</td>
</tr>
<tr>
<td>SBR4</td>
<td>Prior to facility turnover to a demolition contractor, structures shall have hazardous material inventories below the RQ in 40 CFR 302. (See also PR2 and PR7.)</td>
<td>Worker protection against hazardous materials (ASR Number SA 2000-1028, Rev 1, SBR2)</td>
<td>This I-HASP (current revision), Attachment 5; project-specific Implementation Plan; FI&URP Manager’s Standing Orders Plan, 60400-PL-0010</td>
</tr>
</tbody>
</table>
ATTACHMENT 2: Example Safety Basis Requirements (SBRs) and Process Requirements (PRs)

<table>
<thead>
<tr>
<th>SBR or PR</th>
<th>Requirement</th>
<th>Basis/Source</th>
<th>Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBR5</td>
<td>To maintain the hazard classification of RadF for the applicable facilities/areas, propane inventory adjacent to the facilities where D&D activities are performed shall not exceed 15,000 pounds.</td>
<td>Worker protection. (ASR Number SA 2000-1027, Rev 2, SBR5)</td>
<td>This I-HASP (current revision) supports the bounding accident analysis in Attachment 9. FI&URP Manager’s Standing Orders Plan, 60400-PL-0010</td>
</tr>
<tr>
<td>PR1</td>
<td>To minimize the consequences in the event of an actual emergency, affected employees shall follow the guidance provided in this I-HASP in Section 11.4, Emergency Response.</td>
<td>Worker protection during emergencies. (ASR Number SA 2000-1027, Rev 2, PR4)</td>
<td>This I-HASP (current revision) in Section 11.4, Emergency Response; and DCPC Contract No. FSC 648, Part 8</td>
</tr>
<tr>
<td>PR2</td>
<td>D&D residual hold-up work shall be performed per the directions and requirements specified in the applicable Implementation Plan.</td>
<td>Worker protection (ASR Number SA 2000-1027, Rev 2, PR5)</td>
<td>Current D&D Implementation Plan; DCPC Contract No. FSC 648, Part 8; FI&URP Manager’s Standing Orders Plan, 60400-PL-0010</td>
</tr>
<tr>
<td>PR3</td>
<td>A Safety Program incorporating the requirements of OSHA 1926.65, Hazardous Waste Operations and Emergency Response or 1910.120, Hazardous Waste Operations and Emergency Response (HAZWOPER), shall be in place for all D&D activities, as outlined in this I-HASP.</td>
<td>Worker protection as required by DOE and OSHA. (ASR Number SA 2000-1028, Rev 1, PR2)</td>
<td>This I-HASP (current revision); and DCPC Contract No. FSC 648, Part 8</td>
</tr>
<tr>
<td>PR4</td>
<td>The project shall develop, approve, and maintain with rigor and discipline this I-HASP, safe work plans, and safety permissives (work permits listed in Attachments 2 and 3 herein) that meet the intent of OSHA 1926.65, Hazardous Waste Operations and Emergency Response or 1910.120, Hazardous Waste Operations and Emergency Response (HAZWOPER).</td>
<td>Worker protection. (ASR Number SA 2000-1028, Rev 1, PR3)</td>
<td>This I-HASP (current revision); permissives as outlined in Attachments 2 and 3; and DCPC Contract No. FSC 648, Part 8</td>
</tr>
</tbody>
</table>
ATTACHMENT 2: Example Safety Basis Requirements (SBRs) and Process Requirements (PRs)

<table>
<thead>
<tr>
<th>SBR or PR</th>
<th>Requirement</th>
<th>Basis/Source</th>
<th>Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR5</td>
<td>The project shall develop, approve, maintain, and perform work with rigor and discipline in accordance with Safe Work Plans that implement the applicable safety requirements, as described in this I-HASP.</td>
<td>Worker protection. (ASR Number SA 2000-1028, Rev 1, PR4)</td>
<td>This I-HASP (current revision); and DCPC Contract No. FSC 648, Part 8</td>
</tr>
<tr>
<td>PR6</td>
<td>Project plans to remove hold-up ERM shall be reviewed and approved by Nuclear Criticality Safety (NCS) staff through the D&D Implementation Plan (IP) process</td>
<td>Worker protection. (ASR Number SA 2000-1028, Rev 1, PR5)</td>
<td>This I-HASP (current revision); the project-specific Implem. Plan; DCPC Contract No. FSC 648, Part 8; FI&URP Manager's Standing Orders Plan, 60400-PL-0010</td>
</tr>
<tr>
<td>PR7</td>
<td>If suspect material (e.g., process residue/hazardous material that exceeds the criteria established in SBR4) is discovered during the demolition of a FCP facility, work in that area will stop and the D&D Construction Contractor will notify the FCP D&D Construction Contracts Manager (CCM). The CCM will, in turn, contact the D&D CP Manager and the situation will be jointly assessed for action. Any required permissives to perform hold-up removal work will be the responsibility of D&D CP management. This work will be performed with the rigor and discipline required for this Radiological (RadF) hazard activity to be performed within the Other Industrial Facility (OIF).</td>
<td>Worker protection against hazardous materials. (ASR Number SA 2000-1028, Rev 1, PR6)</td>
<td>This I-HASP (current revision); the project-specific turnover documentation; and DCPC Contract No. FSC 648, Part 8</td>
</tr>
<tr>
<td>PR8</td>
<td>Revision of this D&D I-HASP (annual or otherwise) requires N&SS review and signature approval.</td>
<td>SH-0001, Development and Issue of Project Specific Health and Safety Reqs.</td>
<td>This I-HASP (current revision); and annual review process (per SH-0001)</td>
</tr>
</tbody>
</table>